
Stephen Checkoway

Programming Abstractions
Lecture 15: Backtracking

Backtracking

chris

@chrsnjk

I have a good backtracking joke.

Um, no, actually it is a bad one.

11<31 AM · Jul 28, 2020

21 See chris s̓ other Tweets

Backtracking

A method to search for all possible elements in the solution space of many

problems

- Not efficient: often exponential time

‣ Thus it only works on small problems

+ Fairly easy to implement for a wide class of problems

Types of problems

To apply backtracking, the problem needs to have solutions that can be built

one decision at a time

The solution space for such problems forms a tree

...

start

first decision

second decision

etc.

Strategy for solving

‣ Make a choice for each decision

‣ If the result is a complete, valid solution, we're done

‣ Otherwise, we need to backtrack to one of the decisions we've made and

make a different one

...

start

first decision

second decision

etc.

Examples you've seen before

In the CS 150 Anagrams lab

‣ The decisions were deciding if a letter should belong to the current word or not

‣ Each step consisted of trying to make a word out of the remaining letters by

looking through the words of a dictionary

‣ If all letters couldn't be used to make words, you backed up and made different

choices

In CS 151, you solved maze using stacks and queues

‣ The decisions you have to make are which cell to add to the solution path next

‣ Each step consisted of picking a new cell of the maze add to the solution path to

explore

‣ If you got stuck, you backed up

n-queens

A famous problem solvable via backtracking

‣ Place n chess queens on an n × n chessboard such that no two queens are in

the same row, same column, or same diagonal

The decisions are the locations of the queens and each step consists of

choosing a row for a queen in a given column

So start with the first column, choose a row in which to place the queen

Then move to the next column and choose a row

Repeat until all decisions have been made; if the solution is valid, you're done,

otherwise, back up and make different choices for one or more decisions

Example: n = 4
(Backtracking steps omitted)

♛ ♛

♛

♛

♛

♛
♛

♛

♛

♛

Decision 1 Decision 2 Decision 3 Decision 4

Backtracking as search

Backtracking performs a depth-first search through the solution space

‣ It tries the first possible value for the first step

‣ Then the first value for the second step

‣ And so on

‣ If this is a valid solution, we're set!

...

If it's not a valid solution, we back up and make a different choice

Backtracking as search

...

Suppose this isn't a valid solution so now we're out of options for the third step

We need to make a different second choice

Repeat this until we have a valid solution or none exist

Backtracking as search

...

Speeding things up

Backtracking isn't efficient but we can do better than trying every possible value

In many cases, we can test if a partial solution is feasible

‣ If so, continue as before

‣ If not, move on to the next (or backtrack) immediately rather than waiting until

the whole subtree has been explored

We can do this with n-queens

‣ As soon as a partial solution contains two queens in the same row or on the

same diagonal, it moves on to the next choice or backtracks

High level algorithm

Setup: We have to make n decisions in order to get a solution

‣ For n-queens, the decisions are the locations of the queens

For decision i, we're going to choose from among m possible choices as follows

‣ For each possible choice x,

- If the ith decision is x and this leads to a situation in which no choices for

decisions i+1 through n could possible lead to a valid solution (i.e., the

partial solution is infeasible), then try move on to the next choice

- Otherwise, tentatively pick x for decision i and recursively make the rest of

the decisions. If the recursive call returns failure, move on to the next

choice for decision i; otherwise return the solution

‣ If no choices remain, return failure

Returning failure results in backtracking

Imagine we're solving 4-queens by picking a row for each

column in turn. For column 0 (from left to right), we've

selected row 0 (from top to bottom), for column 1, we've

selected row 2, and for column 2, we've selected row 1.

At this point, we should either pick the next row for

column 2 (i.e., row 2) or backtrack rather than picking a

row for column 3. Why?

A. The partial solution is not

feasible: No choice for column 3

will be a valid configuration of

queens

B. None of other choices for column

2 will work so we need to make a

different choice

C. There's no need to pick the next

row or backtrack now; it can do

that after picking a row for

column 3

14

♛

♛
♛

0 1 2 3

0

1

2

3

Example: n = 4

Initial state

Example: n = 4

♛

Step 1

Example: n = 4

♛ ♛

Step 2

Example: n = 4

♛
♛

Step 3

Example: n = 4

♛

♛

Step 4

Example: n = 4

♛

♛

♛

Step 5

Example: n = 4

♛

♛
♛

Step 6

Example: n = 4

♛

♛ ♛

Step 7

Example: n = 4

♛

♛
♛

Step 8

Example: n = 4

♛

♛
Step 9

Example: n = 4

♛

♛

♛

Step 10

Example: n = 4

♛

♛

♛

Step 11

Example: n = 4

♛

♛

♛
♛

Step 12

Example: n = 4

♛

♛

♛ ♛

Step 13

Example: n = 4

♛

♛

♛
♛

Step 14

Example: n = 4

♛

♛

♛

♛
Step 15

Example: n = 4

♛

♛
♛

Step 16

Example: n = 4

♛

♛ ♛
Step 17

Example: n = 4

♛

Step 18

Example: n = 4

♛
♛

Step 19

Example: n = 4

♛ ♛

Step 20

Example: n = 4

♛
♛

Step 21

Example: n = 4

♛

♛
Step 22

Example: n = 4

♛

♛

♛

Step 23

Example: n = 4

♛

♛

♛ ♛

Step 24

Example: n = 4

♛

♛

♛
♛

Step 25

Example: n = 4

♛

♛

♛

♛

Step 26

Success!

Generic backtracking pseudocode

params are the parameters of the problem at hand  

sofar is a list of decisions that make up the current partial solution  

this either returns a complete solution or returns a failure signal of some kind  

backtrack(params, sofar)

‣ If sofar is a complete solution, return sofar

‣ For each possible value v for the next decision

- If adding v to sofar makes a feasible partial solution, then

• res = backtrack(params, sofar + [v]))

• If res is not the failure signal, then return res

‣ return failure # if we made it here, no possible value of v led to a solution

Pass a new list containing the

elements of sofar and the element v

What should we use as a failure signal?

Some options

‣ null

‣ #f

‣ 'failure

null actually isn't a great option because it's also the empty list '() and '()

might be a valid solution

‣ E.g., imagine trying to find a subset of numbers in a list that sum to a given

value, (subset-sum lst n), if n is 0, then returning '() is the only correct

solution

The other two are reasonable choices

Backtracking in Racket

; sofar is the list of steps so far in reverse order

; curr is the current value to try

(define (backtrack params sofar curr)

 (cond [⟨sofar is a complete solution⟩ (reverse sofar)]

 [⟨curr is out of the range of possible values⟩ #f]

 [(feasible sofar curr)

 (let ([res (backtrack params

 (cons curr sofar)

 ⟨first value for next step⟩))])

 (if res

 res

 (backtrack params sofar ⟨value after curr⟩)))]

 [else (backtrack params sofar ⟨value after curr⟩)]))

Using backtrack

(Of course, you'll write specific backtrack and feasible functions for each

problem)

(backtrack params empty ⟨first value for first step⟩)

n-queens
(single solution)

First, how should we represent a solution?

‣ A list of row–column pairs like  

'((0 0) (4 1) (7 2) (5 3)  
 (2 4) (6 5) (1 6) (3 7))

‣ A list of rows like '(0 4 7 5 2 6 1 3)

Either works and we can easily convert from one

to the other

‣ (map list list-of-rows (range n))

‣ (map first (sort list-of-pairs  
 <  
 #:key second))

Let's use a list of rows

♛

♛

♛

♛

♛

♛

♛

♛

Careful!

Our normal procedure for constructing the list of decisions prepends the current

step to our partial solution

‣ (bt (cons curr sofar) initial)

This means our partial solution will be in reverse order which means we need to

‣ reverse our final result so it's in the correct order; and

‣ write our (feasible? sofar curr) procedure keeping this in mind

n-queens

(define (bt n sofar curr)

 (cond [(is-complete? sofar) (reverse sofar)]

 [(out-of-range? curr) #f]

 [(feasible? sofar curr)

 (let ([res (bt n (cons curr sofar) initial)])

 (if res

 res

 (bt n sofar (next curr))))]

 [else (bt n sofar (next curr))]))

(define (n-queens n)

 (bt n empty initial))

What's our initial value?

A. 0

B. 1

C. n

D. n-1

E. n+1

23

(define (bt n sofar curr)

 (cond [(is-complete? sofar) (reverse sofar)]

 [(out-of-range? curr) #f]

 [(feasible? sofar curr)

 (let ([res (bt n (cons curr sofar) initial)])

 (if res

 res

 (bt n sofar (next curr))))]

 [else (bt n sofar (next curr))]))

(define (n-queens n)

 (bt n empty initial))

What's our (next curr) procedure?

A. (add1 curr)

B. (add1 (modulo curr n))

C. (modulo (add1 curr) n)

D. (modulo (add1 curr) (add1 n))

E. More than one of the above

24

(define (bt n sofar curr)

 (cond [(is-complete? sofar) (reverse sofar)]

 [(out-of-range? curr) #f]

 [(feasible? sofar curr)

 (let ([res (bt n (cons curr sofar) initial)])

 (if res

 res

 (bt n sofar (next curr))))]

 [else (bt n sofar (next curr))]))

(define (n-queens n)

 (bt n empty initial))

What's our (is-complete? sofar) procedure?

A. (feasible? sofar null)

B. (= (length sofar) n)

C. (= (length sofar) (add1 n))

D. (= (length sofar) (sub1 n))

E. More than one of the above

25

(define (bt n sofar curr)

 (cond [(is-complete? sofar) (reverse sofar)]

 [(out-of-range? curr) #f]

 [(feasible? sofar curr)

 (let ([res (bt n (cons curr sofar) initial)])

 (if res

 res

 (bt n sofar (next curr))))]

 [else (bt n sofar (next curr))]))

(define (n-queens n)

 (bt n empty initial))

What's our (out-of-range? curr) procedure?

A. (< curr n)

B. (= curr n)

C. (> curr n)

D. (< n 0)

E. (not (integer? curr))

26

(define (bt n sofar curr)

 (cond [(is-complete? sofar) (reverse sofar)]

 [(out-of-range? curr) #f]

 [(feasible? sofar curr)

 (let ([res (bt n (cons curr sofar) initial)])

 (if res

 res

 (bt n sofar (next curr))))]

 [else (bt n sofar (next curr))]))

(define (n-queens n)

 (bt n empty initial))

feasible?

There are three conditions

‣ No two queens share the same column

- Easy, we're picking one queen per column so this is always satisfied

‣ No two queens share the same row

- We'll need to check that sofar doesn't already contain curr

‣ No two queens share the same diagonal

- Two diagonals to check: up-left from curr and down-left from curr

- Lots of ways to do this, here's one: move left through columns; up through rows

(define (up-left-ok? queen-rows row)

 (cond [(empty? queen-rows) #t]

 [(= (first queen-rows) row) #f]

 [else (up-left-ok? (rest queen-rows) (sub1 row))]))

(up-left-ok? sofar (sub1 curr))

feasible?

There are three conditions

‣ No two queens share the same column

- Easy, we're picking one queen per column so this is always satisfied

‣ No two queens share the same row

- We'll need to check that sofar doesn't already contain curr

‣ No two queens share the same diagonal

- Two diagonals to check: up-left from curr and down-left from curr

- Lots of ways to do this, here's one: move left through columns; up through rows

(define (up-left-ok? queen-rows row)

 (cond [(empty? queen-rows) #t]

 [(= (first queen-rows) row) #f]

 [else (up-left-ok? (rest queen-rows) (sub1 row))]))

(up-left-ok? sofar (sub1 curr))

Move left through

reversed columns

feasible?

There are three conditions

‣ No two queens share the same column

- Easy, we're picking one queen per column so this is always satisfied

‣ No two queens share the same row

- We'll need to check that sofar doesn't already contain curr

‣ No two queens share the same diagonal

- Two diagonals to check: up-left from curr and down-left from curr

- Lots of ways to do this, here's one: move left through columns; up through rows

(define (up-left-ok? queen-rows row)

 (cond [(empty? queen-rows) #t]

 [(= (first queen-rows) row) #f]

 [else (up-left-ok? (rest queen-rows) (sub1 row))]))

(up-left-ok? sofar (sub1 curr))

Move left through

reversed columns
Move up through rows

At various points, the backtracking algorithm needs to choose the next value

to try for the current step or it needs to backtrack to a previous step.

When does it need to backtrack to a previous step?

A. It backtracks each time it encounters a partial solution that isn't feasible

B. It backtracks whenever there are no more choices for the current step

C. It backtracks when the choice it makes for the final step leads to an

invalid solution

D. It backtracks after each invalid choice

E. All of the above

28

One common variant: all solutions

Rather than using #f to signal failure, we'll use empty to indicate the set of

solutions is empty

Key differences

‣ Rather than stopping after a single solution is found, keep going

‣ Each call will return a list of solutions

‣ When we have a feasible solution, we need to get all the solutions both using

the feasible one and not

All solutions in Racket

(define (all-sol params sofar curr)

 (cond [⟨sofar is a complete solution⟩ (list (reverse sofar))]

 [⟨curr is out of the range of possible values⟩ '()]

 [(feasible sofar curr)

 (let ([res1 (all-sol params

 (cons curr sofar)

 ⟨first value for next step⟩))]  

 [res2 (all-sol params sofar ⟨value after curr⟩)])

 (append res1 res2))]

 [else (all-sol params sofar ⟨value after curr⟩)]))

(all-sol params empty ⟨first value for first step⟩)

Permutations of {0, 1, ..., n-1}
(Not the most efficient way)

Let's compute all permutations of {0, 1, ..., n-1} using backtracking

(define (bt n sofar curr)  
 (cond [(is-complete? sofar) (list sofar)]

 [(out-of-range? curr) empty]

 [(feasible? sofar curr)

 (let ([with-curr (bt n (cons curr sofar) initial)]

 [without-curr (bt n sofar (next curr))])

 (append with-curr without-curr))]

 [else (bt n sofar (next curr))]))

(define (all-perms n)

 (bt n empty initial))

We just need to deal with the problem-specific parts

n-queens all solutions

No harder than getting one solution, we just need to plug in the usual parts

(define (bt n sofar curr)  
 (cond [(is-complete? sofar) (list (reverse sofar))]

 [(out-of-range? curr) empty]

 [(feasible? sofar curr)

 (let ([with-curr (bt n (cons curr sofar) initial)]

 [without-curr (bt n sofar (next curr))])

 (append with-curr without-curr))]

 [else (bt n sofar (next curr))]))

(define (all-queens n)

 (bt n empty initial))

